SVTS Industrial grille

The SVTS grille is designed for use as a supply air terminal device for large premises where a long throw or alternatively an effective mixing technique is desired. Flow pattern can be adjusted straight and narrow or short and mixing with vertical front blades. Horizontal back blades enable the adjustment of the flow pattern steplessly upwards and downwards

Quick Selection

Air flow up to 750 l/s (2700 m³/h) and 35 dB(A).

Product Facts

- Flow pattern can be adjusted
- Effective mixing technique

Product code example

Industrial grille SVTS-300-300 Adjusting device S-300-300

> AIRTREND Ltd. Predstavništvo u Beogradu Kumanovska 14 11000 Beograd Tel: 011 3836886, 3085740 Faks: 011 3444113 e-mail: gobrid@eunet.rs web: www.airtrend.rs

Selection diagrams, diffusion pattern, throw

Selection diagrams

Front blades straight, back blades straight

α	30°	20°
\mathbf{k}_{α}	1,6	1,3
ΔL_{α}	+7	+3(dB)

L_{0,3}= 0,67 x L_{0,2}

Diffusion pattern

From top

 $b = 0.25 \times L_{0,2}$ (straight air jet) $b = 1.3 \times L_{0,2}$ (fan-shaped)

From side (free space mounting)

 $\label{eq:h} \begin{array}{l} h=0,13 \ge L_{0,2} \mbox{ (straight air jet)} \\ h=0,13 \ge L_{0,2} \mbox{ (fan-shaped)} \end{array}$

α	30°	20°	
kα	1,6	1,3	
ΔL_{α}	+7	+3(dB)	

L_{0,3}= 0,67 x L_{0,2}

Throw

Non-isothermal, air flow fan-shaped, back blades straight

Front blades in fan-shaped position, back blades straight

Sound data, definitions

Sound power level Lw

front blades straight

SVTS		Correction K _{oct} Middle frequency of octave band (Hz)							
		63	125	250	500	1000	2000	4000	8000
300x300		0	-2	4	4	-2	-9	-21	-31
400x400		1	Ο	5	5	-3	-11	-16	-23
500x500		З	2	6	5	-4	-13	-21	-30
Toler	+/-	6	З	2	2	2	2	2	З

front blades fan-shaped

SVTS		Cor	rectior	n K _{oct} N	1iddle f	requend	cy of oct	ave ban	d (Hz)
		63	125	250	500	1000	2000	4000	8000
300x300		2	-2	З	5	-2	-11	-26	-38
400x400		З	1	4	5	-3	-13	-19	-23
500x500		-2	-1	Ο	4	Ο	-7	-16	-23
Toler	+/-	6	З	2	2	2	2	2	З

The sound power levels in each octave band are obtained by adding the sound power level L_{p10A} , dB(A) to the correction factors K_{oct} in the table with help of the following formula:

 $L_{Woct} = L_{p10A} + K_{oct}$

Sound attenuation ΔL

SVTS		Sound attenuation $\Delta L(dB)Middle$							
		frequency of octave band (Hz)							
		63	125	250	500	1000	2000	4000	8000
300x300		14	9	4	1	0	0	0	0
400x400		12	7	З	1	0	0	0	0
500x500		10	5	2	1	0	0	0	0
Toler	+/-	6	З	2	2	2	2	2	З

The average sound attenuation ΔL from duct to room including the orifi ce attenuation of the connecting duct in free space mounting is obtained in the table above.

Definitions

q_v	air flow	(l/s)
Δp_t	total pressure drop	(Pa)
L _{p10A}	sound pressure level with 10m ² sab room attenuation (=4 dB)	[dB(A)]
L _{0,2}	throw corresponding final velocity 0,2 m/s	(m)
α	adjustment angle of the back blades	(°)
k _α	factor of the rise of pressure drop caused by the adjustment α of the back blades	
ΔL_{α}	the rise of the sound pressure level caused by the adjustment α of the back blades	(dB)
Δt	temperature difference between the supply air and the room air	(°C)
v _k	front face velocity	(m/s)
A _k	front face area (B x H)	(m^2)
K _A	increase to the sound pressure level caused by $\mathbf{A}_{\mathbf{k}}$	(dB)
m ₂	measuring tolerance (error of methode)	(%)

Adjusting device S, measurement of the air flow

Adjusting device S (accessory)

Supply air

Sound level of adjusting device:

 $L_{p10As} = L_{p10A} + K_A$

$$v_{k} = \frac{q_{v}}{(B-50) \times H} \left[\frac{m^{3}/s}{m^{2}} \right]$$

Effect of the front face area (Ak) to the sound level

A _K = B x H	300x300	400x400	500x500
K _A	+4	+7	+9

Total sound level of grille and adjusting device

Difference of sound levels	O1	23	49	>10	dB
between grille and adjustment					
device					
Addition to the higher sound	3	2	1	0	dB
pressure level					

Measurement of the air flow

The air flow is measured as a pressure difference measurement by taking the hose pipe of the differential pressure instrument behind the back blades of the grille.

K-values							
Size	Front blades straight back blades O°	Front blades straight back blades 20°	Front blades straight back blades 30°				
300x300	71	64	58				
400x400	145	112	98				
500x500	269	226	205				
Size	Front blades fan-shaped back blades O°	Front blades fan-shaped back blades 20°	Front blades fan-shaped back blades 30°				
300x300	57	54	50				
400x400	123	102	87				
500x500	239	206	152				

K-value is obtained by measuring Δp_m (Pa) in duct behind the grille.

 $m_2 = \pm 10 \%$

Dimension and weight

Dimension and weight

The	cut-out =	nominal	size
TILL	cui-oui –	nomman	SILC

General, construction, installation, product code

General

The SVTS grille is designed for use as a supply air terminal device for large premises where a long throw or alternatively an effective mixing technique is desired.

Construction

Vertical, directional front blades. Flow pattern can be adjusted straight and narrow (front blades in a straight position) or short and mixing (front blades in a fanshaped position). Horizontal, directional, back blades that turn together, enable the adjustment of the flow pattern steplessly upwards and downwards.

The blades of the grille are manufactured from aluminium profi le and the frame from hot galvanized sheet steel. On special order the grille is also available in white or gray colour (the back blades not painted).

Installation

The grille is fitted direct to the end of a rectangular duct with screws through the front face of the flange. Another possibility is to install the grille to the side of a circular duct with help of a side adapter which is available as an extra fitting.

Descriptive text

Industrial air grille SVTS manufactured by Fläkt Woods, e.g in size 300 x 300.

Product code

Industrial air grille SVTS-aaa-bbb

Size, width-height, mm (aaa-bbb) 300-300, 400-400, 500-500

Accessories

Adjusting device S-aaa-bbb

Size, width-height, mm (aaa-bbb) 300-300, 400-400, 500-500

Side adapter for a circular duct PSL-aaa-bbb-ccc

Duct diameter (aaa) 400, 500, 630

Size, width-height, mm (bbb-ccc) 300-300, 400-400, 500-500

Side adapter for a rectangular duct KSL-aaa-bbb

Size, width-height, mm (aaa-bbb) 300-300, 400-400, 500-500